Kecepatan Pembakaran Laminar dan Tinggi Api Premix pada Campuran Pertamax-Avgas dengan Etanol
Keywords:
api premix, avgas 100LL, bahan bakar penerbangan, kecepatan pembakaran, pesawat mesin pistonAbstract
Bahan bakar penerbangan yang umum digunakan untuk pesawat dengan tipe mesin reciprocating adalah avgas 100 LL. Keandalan penggunaan bahan bakar ini masih belum tergantikan, khususnya di daerah Indonesia. Pada umumnya avgas menggunakan zat aditif berbahaya berupa tetraethyl lead atau timbal untuk meningkatkan performa bahan bakar ini. Meskipun dapat meningkatkan performa, zat aditif ini terkenal menjadi cancer agent hingga penyebab penurunan IQ akademik pada anak-anak. Beberapa penelitian untuk mengurangi penggunaan timbal pada bahan bakar penerbangan sudah beberapa kali dibahas oleh para peneliti, salah satunya dengan mencampurkan avgas dengan bahan bakar konvensional tanpa timbal. Namun jarang yang membahas mengenai kecepatan pembakaran laminar (SL) pada topik tersebut. Artikel ini bertujuan untuk mengetahui dampak pencampuran bahan bakar avgas dengan pertamax serta penambahan etanol, serta variasi nosel burner terhadap kecepatan pembakaran laminar (SL) dan tinggi api premix yang dihasilkan pada rasio ekuivalen 0,8; 1,0; dan 1,2. Metode bunsen burner dipilih sebagai alat pengujian, karena dinilai simpel dan memiliki hasil yang cukup akurat. Dari pengujian yang dilakukan etanol memiliki nilai SL tertinggi. Campuran avgas dan pertamax memiliki kecepatan pembakaran yang lebih rendah dibanding avgas 100 LL murni, namun lebih tinggi dari pada pertamax murni. Sebaliknya hasil tinggi api berbanding terbalik. Namun dapat diketahui bahwa penambahan volume 30% etanol pada campuran terbukti meningkatkan kecepatan pembakaran yang dihasilkan. Selain data dari variasi bahan bakar, pengujian juga dilakukan dengan variasi diameter nosel. Dapat diketahui bahwa diameter nosel mempengaruhi nilai SL.
Downloads
References
Almarzooq, Y. M., Schoegl, I., & Petersen, E. L. (2023). Laminar flame speed measurements of a gasoline surrogate and its mixtures with ethanol at elevated pressure and temperature. Fuel, 343, 128003. https://doi.org/10.1016/j.fuel.2023.128003
Amell, A. A. (2007). Influence of altitude on the height of blue cone in a premixed flame. Applied Thermal Engineering, 27(2–3), 408–412. https://doi.org/10.1016/j.applthermaleng.2006.07.013
Bahri, S., Muhaya, L., Wardana, I., & Widhiyanuriyawan, D. (2015). Pembakaran Premixed Minyak Nabati pada Bunsen Burner Type Silinder. Jurnal Rekayasa Mesin, 6(1), 45–50.
Bishop, G. J., & Elvers, B. (2021). Aviation Gasoline (Avgas)*. Dalam Handbook of Fuels (hlm. 529–531). Wiley. https://doi.org/10.1002/9783527813490.ch25
Chen, Z., Burke, M. P., & Ju, Y. (2009). Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames. Proceedings of the Combustion Institute, 32(1), 1253–1260. https://doi.org/10.1016/j.proci.2008.05.060
Chung Tsai, K.-, & Drysdale, D. (2002). Flame height correlation and upward flame spread modelling. Fire and Materials, 26(6), 279–287. https://doi.org/10.1002/fam.809
Cusick, S. K., Antonio I. Cortés, Ph. D., & Clarence C. Rodrigues, Ph. D. (2017). Commercial aviation safety. Dalam Commercial Aviation Safety (6th Edition). McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9781259641824/toc-chapter/chapter1/section/section1
Del Pecchia, M., Pessina, V., Berni, F., d’Adamo, A., & Fontanesi, S. (2020). Gasoline-ethanol blend formulation to mimic laminar flame speed and auto-ignition quality in automotive engines. Fuel, 264, 116741. https://doi.org/10.1016/j.fuel.2019.116741
Dirrenberger, P., Glaude, P. A., Bounaceur, R., Le Gall, H., da Cruz, A. P., Konnov, A. A., & Battin-Leclerc, F. (2014). Laminar burning velocity of gasolines with addition of ethanol. Fuel, 115, 162–169. https://doi.org/10.1016/j.fuel.2013.07.015
El-Sayed, A. F. (2017). Aircraft Propulsion and Gas Turbine Engines, Second Edition. CRC Press. https://doi.org/10.1201/9781315156743
Ershov, M. A., Klimov, N. A., Burov, N. O., Abdellatief, T. M. M., & Kapustin, V. M. (2021). Creation a novel promising technique for producing an unleaded aviation gasoline 100UL. Fuel, 284, 118928. https://doi.org/10.1016/j.fuel.2020.118928
FAA. (2012). Unleaded AVGAS Transition Aviation Rulemaking Committee FAA UAT ARC Final Report Part II Appendices. https://www.faa.gov/regulations_policies/rulemaking/committees/documents/media/Avgas.ARC.RR.Appendix.2.17.12.pdf
Fu, J., Tang, C., Jin, W., Thi, L. D., Huang, Z., & Zhang, Y. (2013). Study on laminar flame speed and flame structure of syngas with varied compositions using OH-PLIF and spectrograph. International Journal of Hydrogen Energy, 38(3), 1636–1643. https://doi.org/10.1016/j.ijhydene.2012.11.023
Gökmen, M. S., Aydoğan, H., & Doğan, İ. (2021). Effect of Gasoline-AVGAS Blends on Engine Performance of Engine with Direct Injection. Bioenergy Studies, Black Sea Agricultural Research Institute, 1(1), 1–6. https://doi.org/10.51606/bes.2021.1
He, X., Hou, X., Yang, Q., Ma, X., Tian, G., & Liu, F. (2019). Study of laminar combustion characteristics of gasoline surrogate fuel-hydrogen-air premixed flames. International Journal of Hydrogen Energy, 44(26), 13910–13922. https://doi.org/10.1016/j.ijhydene.2019.03.009
Hua, Y., Qiu, L., Liu, F., Qian, Y., & Meng, S. (2020). Numerical investigation into the effects of oxygen concentration on flame characteristics and soot formation in diffusion and partially premixed flames. Fuel, 268, 117398. https://doi.org/10.1016/j.fuel.2020.117398
Ibadurrohman, I. A., Hamidi, N., & Yuliati, L. (2021). Pengaruh Panjang Rantai Karbon dan Derajat Ketidakjenuhan terhadap Karakteristik Pembakaran Droplet Asam Lemak Tunggal. Jurnal Rekayasa Mesin, 12(2), 331–347. https://doi.org/10.21776/ub.jrm.2021.012.02.11
Jiang, Y., Gruber, A., Seshadri, K., & Williams, F. (2020). An updated short chemical‐kinetic nitrogen mechanism for carbon‐free combustion applications. International Journal of Energy Research, 44(2), 795–810. https://doi.org/10.1002/er.4891
Karakoç, T. H., Colpan, C. O., & Şöhret, Y. (2018). Advances in Sustainable Aviation. Dalam T. H. Karakoç, C. O. Colpan, & Y. Şöhret (Ed.), Advances in Sustainable Aviation. Springer International Publishing. https://doi.org/10.1007/978-3-319-67134-5
Katoch, A., Millán-Merino, A., & Kumar, S. (2018). Measurement of laminar burning velocity of ethanol-air mixtures at elevated temperatures. Fuel, 231, 37–44. https://doi.org/10.1016/j.fuel.2018.05.083
Kohse-Höinghaus, K. (2021). Combustion in the future: The importance of chemistry. Proceedings of the Combustion Institute, 38(1), 1–56. https://doi.org/10.1016/j.proci.2020.06.375
Kohse‐Höinghaus, K., Oßwald, P., Cool, T. A., Kasper, T., Hansen, N., Qi, F., Westbrook, C. K., & Westmoreland, P. R. (2010). Biofuel Combustion Chemistry: From Ethanol to Biodiesel. Angewandte Chemie International Edition, 49(21), 3572–3597. https://doi.org/10.1002/anie.200905335
Kumar, T., Mohsin, R., Ghafir, M. F. A., Kumar, I., & Wash, A. M. (2018a). Concerns over use of leaded aviation gasoline (AVGAS) fuel. Chemical Engineering Transactions, 63, 181–186. https://doi.org/10.3303/CET1863031
Kumar, T., Mohsin, R., Ghafir, M. F. A., Kumar, I., & Wash, A. M. (2018b). Review of alternative fuel initiatives for leaded aviation gasoline (AVGAS) replacement. Chemical Engineering Transactions, 63, 175–180. https://doi.org/10.3303/CET1863030
Kumar, T., Mohsin, R., Majid, Z. A., Ghafir, M. F. A., Yusuf, N. K., Kim, J. Y., Wash, A. M., & Sahri, D. M. (2019). Response surface methodology application in optimization of performance and exhaust emissions of RON 98, aviation gasoline 100LL and the blends in Lycoming O-320 engine. Fuel, 256. https://doi.org/10.1016/j.fuel.2019.115909
Kumar, T., Mohsin, R., Majid, Z. Abd., Ghafir, M. F. A., & Wash, A. M. (2020a). Experimental optimisation comparison of detonation characteristics between leaded aviation gasoline low lead and its possible unleaded alternatives. Fuel, 281, 118726. https://doi.org/10.1016/j.fuel.2020.118726
Kumar, T., Mohsin, R., Majid, Z. Abd., Ghafir, M. F. A., & Wash, A. M. (2020b). Experimental study of the anti-knock efficiency of high-octane fuels in spark ignited aircraft engine using response surface methodology. Applied Energy, 259, 114150. https://doi.org/10.1016/j.apenergy.2019.114150
Kustanto, M. N., Wardana, N. G., Sasongko, M. N., & Yuliati, L. (2017). Laminar burning velocity of ethanol premixed combustion enriched with liquefied petroleum gas (LPG). ENERGETIKA, 16–22.
Li, C., Cheng, K., Ma, S., Liu, H., Ji, Z., & Qin, J. (2022). Performance analysis of solid oxide fuel cell/piston engine hybrid system for aviation. Applied Thermal Engineering, 214, 118797. https://doi.org/10.1016/j.applthermaleng.2022.118797
McAllister, S., Chen, J.-Y., & Fernandez-Pello, A. C. (2011). Thermodynamics of Combustion (hlm. 15–47). https://doi.org/10.1007/978-1-4419-7943-8_2
MIKOFSKI, M., WILLIAMS, T., SHADDIX, C., & BLEVINS, L. (2006). Flame height measurement of laminar inverse diffusion flames. Combustion and Flame, 146(1–2), 63–72. https://doi.org/10.1016/j.combustflame.2006.04.006
Nasrullah, M. N. C. H., Kustanto, M. N., Darsin, M., Ilminnafik, N., & Syuhri, S. N. H. (2023). Studi Kecepatan Pembakaran Laminar dan Tinggi Api Premix Avgas 100 LL dengan Variasi Ekuivalen Rasio. TURBO : Jurnal Program Studi Teknik Mesin UM Metro , 12(02), 410–417. https://doi.org/10.24127/trb.v12i2.2952
Pan, Z., Zou, X., Zhou, Z., & Zhou, K. (2020). Fatigue Research for Connecting Rod of Aero Piston Engine. Journal of Physics: Conference Series, 1519(1), 012004. https://doi.org/10.1088/1742-6596/1519/1/012004
Pertamina. (2023, September 29). Daftar Harga Aviasi. One solution Pertamina. https://onesolution.pertamina.com/Harga
Pizzuti, L., Martins, C. A., & Lacava, P. T. (2016). Laminar burning velocity and flammability limits in biogas: A literature review. Renewable and Sustainable Energy Reviews, 62, 856–865. https://doi.org/10.1016/j.rser.2016.05.011
Prasetiyo, D. H. T., & Wahyudi, D. (2022). Pengaruh rasio ekuivalen dan komposisi bahan bakar terhadap karakteristik api dengan menggunakan bahan bakar biodiesel kesambi. Turbo : Jurnal Program Studi Teknik Mesin, 11(2). https://doi.org/10.24127/trb.v11i2.2247
Rallis, C. J., & Garforth, A. M. (1980). The determination of laminar burning velocity. Progress in Energy and Combustion Science, 6(4), 303–329. https://doi.org/10.1016/0360-1285(80)90008-8
Ramdani, D., Rizqi, R. M., & Maradita, F. (2019). Pengaruh Fasilitas, Kualitas Pelayanan dan Brand Image Terhadap Keputusan Menggunakan Transportasi Udara. Jurnal Manajemen dan Bisnis, 2(2), 45–56. https://doi.org/10.37673/jmb.v2i2.523
Rejeki, F., & Ayumi, V. (2023). Analisa Sentimen Mengenai Kenaikan Harga Bbm Menggunakan Metode Naïve Bayes Dan Support Vector Machine. JSAI : Journal Scientific and Applied Informatics, 6(1). https://doi.org/10.36085
Seymour, K., Held, M., Georges, G., & Boulouchos, K. (2020). Fuel Estimation in Air Transportation: Modeling global fuel consumption for commercial aviation. Transportation Research Part D: Transport and Environment, 88, 102528. https://doi.org/10.1016/j.trd.2020.102528
Sher, F., Iqbal, S. Z., Liu, H., Imran, M., & Snape, C. E. (2020). Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources. Energy Conversion and Management, 203, 112266. https://doi.org/10.1016/j.enconman.2019.112266
Shiek, S. S., Mani, M. S., Kabekkodu, S. P., & Dsouza, H. S. (2021). Health repercussions of environmental exposure to lead: Methylation perspective. Toxicology, 461, 152927. https://doi.org/10.1016/j.tox.2021.152927
Sileghem, L., Alekseev, V. A., Vancoillie, J., Nilsson, E. J. K., Verhelst, S., & Konnov, A. A. (2014). Laminar burning velocities of primary reference fuels and simple alcohols. Fuel, 115, 32–40. https://doi.org/10.1016/j.fuel.2013.07.004
Suarta, I. M., & Widana, I. K. (2017). PENGARUH PENAMBAHAN N-HEPTANA PADA HYDROUS DAN ANHYDROUS ETANOL TERHADAP KECEPATAN PEMBAKARAN. PROSIDING SNITT POLTEKBA, 2(1), 189–195.
Sugara, I. R., Ilminnafik, N., Junus, S., Kustanto, M. N., & Hermawan, Y. (2023). Experimental Study on the Effect of Magnetic Fields on Combustion Characteristics of Biodiesel from Nyamplung (Calophyllum Inophyllum). Automotive Experiences, 6(1), 122–132. https://doi.org/10.31603/ae.8328
Sulung, S. D., Rumani, D. D., Qiram, I., Nasrullah, M. N. C. H., & Wibowo, U. L. N. (2023). Impact of the fuel mixture ratio of AVGAS 100LL and RON 92 fuel on combustion characteristics. Journal of Science Technology (JoSTec), 5(1), 07–13. https://doi.org/10.55299/jostec.v5i1.478
Sun, X., Wandelt, S., & Zhang, A. (2021). Technological and educational challenges towards pandemic-resilient aviation. Transport Policy, 114, 104–115. https://doi.org/10.1016/j.tranpol.2021.09.010
Tian, G., Daniel, R., Li, H., Xu, H., Shuai, S., & Richards, P. (2010). Laminar Burning Velocities of 2,5-Dimethylfuran Compared with Ethanol and Gasoline. Energy & Fuels, 24(7), 3898–3905. https://doi.org/10.1021/ef100452c
Wahyudi, D. (2013). Kecepatan Api Premix Penyalaan Atas Campuran Stoikiometri dan Nitrogen. Edisi Nopember, 3(2).
Wang, X., Cheng, X., Lu, H., Pan, F., Qin, L., & Wang, Z. (2020). Effect of burner diameter on structure and instability of turbulent premixed flames. Fuel, 271, 117545. https://doi.org/10.1016/j.fuel.2020.117545
Wang, Z., Han, X., He, Y., Zhu, R., Zhu, Y., Zhou, Z., & Cen, K. (2021). Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames. Combustion and Flame, 229, 111392. https://doi.org/10.1016/j.combustflame.2021.02.038
Wardana, I. N. G. (2008). Bahan Bakar dan Teknologi Pembakaran. PT. Danar Wijaya. Brawijaya University Press Malang.
Wei, Y., Wei-wei, C., Yue-qin, S., Xiao-long, Z., & Ying, Z. (2017). Effect of Aromatic Amine Antiknocks on the Properties of Grade 100 Unleaded Aviation Gasoline. Journal of East China University of Science and Technology , 43(3), 311–316. https://doi.org/10.14135/j.cnki.1006-3080.2017.03.003
Więckowski, M. (2021). Will the Consequences of Covid-19 Trigger a Redefining of the Role of Transport in the Development of Sustainable Tourism? Sustainability, 13(4), 1887. https://doi.org/10.3390/su13041887
Xu, H., Yao, C., Xu, G., Wang, Z., & Jin, H. (2013). Experimental and modelling studies of the effects of methanol and ethanol addition on the laminar premixed low-pressure n-heptane/toluene flames. Combustion and Flame, 160(8), 1333–1344. https://doi.org/10.1016/j.combustflame.2013.02.018
Yusri, I. M., Abdul Majeed, A. P. P., Mamat, R., Ghazali, M. F., Awad, O. I., & Azmi, W. H. (2018). A review on the application of response surface method and artificial neural network in engine performance and exhaust emissions characteristics in alternative fuel. Renewable and Sustainable Energy Reviews, 90, 665–686. https://doi.org/10.1016/j.rser.2018.03.095
Zhen, H. S., Leung, C. W., Cheung, C. S., & Huang, Z. H. (2014). Characterization of biogas-hydrogen premixed flames using Bunsen burner. International Journal of Hydrogen Energy, 39(25), 13292–13299. https://doi.org/10.1016/j.ijhydene.2014.06.126
Zhen, H. S., Leung, C. W., Cheung, C. S., & Huang, Z. H. (2016). Combustion characteristic and heating performance of stoichiometric biogas–hydrogen–air flame. International Journal of Heat and Mass Transfer, 92, 807–814. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.040
Zhou, L. (2018). Fundamentals of Combustion Theory. Dalam Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows (hlm. 15–70). Elsevier. https://doi.org/10.1016/B978-0-12-813465-8.00003-X
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.