Identifikasi Potensi Limbah Lidi Kelapa Sawit sebagai Sumber Karbon untuk Aplikasi Penyimpanan Energi Super-kapasitor
DOI:
https://doi.org/10.32528/nms.v2i3.274Keywords:
biomass, lidi sawit, karbon, elektroda, superkapasitorAbstract
Karbon berbasis biomassa untuk aplikasi penyimpanan energi superkapasitor menjadi salah satu kajian terkemuka saat ini dikarenakan sifat fisis dan elektrokimia mereka yang menguntungkan seperti porositas tinggi, konduktivitas baik, stabilitas termal dan kimia stabil. Selain itu, ketersediaan yang berlimpah dan proses sintesisnya yang relatif sederhana menjadikan biomassaa sebagai sumber karbon yang diminati. Pada tudi ini, telah dilakukan kajian tentang identifikasi potensi limbah padat perkebunan khususnya lidi kelapa sawit sebagai sumber karbon alami untuk aplikasi teknologi penyimpanan energi super-kapasitor. Keterbaharuan disoroti pada desain karbon alami yang disiapkan dalam bentuk padat menyerupai koin dengan tanpa adanya penambahan bahan perekat sintetik. Limbah lidi sawit dikonversi menjadi karbon padat dengan proses mudah dan ramah lingkungan melalui pra-karbonisasi, aktivasi kimia, konversi serbuk kedalam bentuk koin dan pirolisis satu langkah terintegrasi. Berdasarkan analisis penyusutan dimensi fisisnya, karbon padat menunjukkan struktur porositas dengan kepadatan yang dipertahankan 0.41 g/cm3. Sifat elektrokimia dari elektroda karbon yang telah dihasilkan ditinjau melalui teknik cyclic voltammetry (CV) dan galvanostatic charge-discharge (GCD) dalam elektrolit 1 M H2SO4. Kapasitansi spesifik tertinggi didapatkan sebesar 140 F/g pada rapat arus 1 A/g. Hasil yang sangat baik ini menunjukkan bahwa pengembangan metode yang diterapkan dan desain bahan elektroda berbasis karbon-biomassa yang dipelajari sangat mungkin untuk mencapai keseimbangan kinerja yang sangat cocok dalam perangkat superkapasitor simetris.
Downloads
References
Ahmed, S., Parvaz, M., Johari, R., & Rafat, M. (2018). Studies on activated carbon derived from neem (azadirachta indica) bio-waste, and its application as supercapacitor electrode. Materials Research Express, 5(4), 045601. https://doi.org/10.1088/2053-1591/aab924
Atika, & Dutta, R. K. (2021). Oxygen-rich porous activated carbon from eucalyptus wood as an efficient supercapacitor electrode. Energy Technology, 9(9), 1–12. https://doi.org/10.1002/ente.202100463
Ayinla, R. T., Dennis, J. O., Zaid, H. M., Sanusi, Y. K., Usman, F., & Adebayo, L. L. (2019). A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage. Journal of Cleaner Production, 229, 1427–1442. https://doi.org/10.1016/j.jclepro.2019.04.116
Ezechi, E. H., & Muda, K. (2019). Overview of trends in crude palm oil production and economic impact in Malaysia. Sriwijaya Journal of Environment, 4(1), 19–26. https://doi.org/10.22135/sje.2019.4.1.19
González, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2016). Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189–1206.
He, D., Gao, Y., Wang, Z., Yao, Y., Wu, L., Zhang, J., Huang, Z. H., & Wang, M. X. (2021). One-step green fabrication of hierarchically porous hollow carbon nanospheres (HCNSs) from raw biomass: Formation mechanisms and supercapacitor applications. Journal of Colloid and Interface Science, 581, 238–250.
Kumar, T. R., Senthil, R. A., Pan, Z., Pan, J., & Sun, Y. (2020). A tubular-like porous carbon derived from waste American poplar fruit as advanced electrode material for high-performance supercapacitor. Journal of Energy Storage, 32(September), 101903. https://doi.org/10.1016/j.est.2020.101903
Li, W., Chen, C., Wang, H., Li, P., Jiang, X., Yang, J., & Liu, J. (2022). Hierarchical porous carbon induced by inherent structure of eggplant as sustainable electrode material for high performance supercapacitor. Journal of Materials Research and Technology, 17, 1540–1552.
Liang, S. X., Duan, F. F., Lü, Q. F., & Yang, H. (2019). Hierarchical Biocarbons with Controlled Micropores and Mesopores Derived from Kapok Fruit Peels for High-Performance Supercapacitor Electrodes. ACS Omega, 4(3), 5991–5999. https://doi.org/10.1021/acsomega.9b00148
Liangshuo, L., Lin, Q., Xinyu, L., Ming, D., & Xin, F. (2020). Preparation of biomass-based porous carbon derived from waste ginger slices and its electrochemical performance. Optoelectronics and Advanced Materials, Rapid Communications, 14(11–12), 548–555.
Lin, X. Q., Yang, N., Qiu-Feng, L., & Liu, R. (2019). Self-Nitrogen-Doped Porous Biocarbon from Watermelon Rind: A High-Performance Supercapacitor Electrode and Its Improved Electrochemical Performance Using Redox Additive Electrolyte. Energy Technology, 7(3).
Liu, H., Chen, W., Zhang, R., Xu, C., Huang, X., Peng, H., Huo, C., Xu, M., & Miao, Z. (2021). Bioinspired in situ self-catalyzing strategy towards graphene nanosheets with hierarchical structure derived from biomass for advanced supercapacitors. Applied Surface Science, 566, 150692.
Liu, Z., Fu, D., Liu, F., Han, G., Liu, C., Chang, Y., Xiao, Y., Li, M., & Li, S. (2014). Mesoporous carbon nanofibers with large cage-like pores activated by tin dioxide and their use in supercapacitor and catalyst support. Carbon, 70, 295–307. https://doi.org/10.1016/j.carbon.2014.01.011
Ma, F., Ding, S., Ren, H., & Liu, Y. (2019). Sakura-based activated carbon preparation and its performance in supercapacitor applications. RSC Advances, 9(5), 2474–2483. https://doi.org/10.1039/c8ra09685f
Niu, J., Liu, M., Xu, F., Zhang, Z., Dou, M., & Wang, F. (2018). Synchronously boosting gravimetric and volumetric performance: Biomass-derived ternary-doped microporous carbon nanosheet electrodes for supercapacitors. Carbon, 140, 664–672. https://doi.org/10.1016/j.carbon.2018.08.036
Rawat, S., Mishra, R. K., & Bhaskar, T. (2022). Biomass derived functional carbon materials for supercapacitor applications. Chemosphere, 286, 131961.
Saini, S., Chand, P., & Joshi, A. (2021). Biomass derived carbon for supercapacitor applications: Review. Journal of Energy Storage, 39, 102646. https://doi.org/10.1016/j.est.2021.102646
Shang, Z., An, X., Liu, L., Yang, J., Zhang, W., Dai, H., Cao, H., Xu, Q., Liu, H., & Ni, Y. (2021). Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor. Carbohydrate Polymers, 251(29), 117107.
Sun, X., Ye, J., Pan, F., Xu, J., Cheng, T., Wang, X., Ikram, M., & Zhu, Y. (2018). Hierarchical porous carbon obtained from frozen tofu for efficient energy storage. New Journal of Chemistry, 42(15), 12421–12428. https://doi.org/10.1039/c8nj01788c
Taer, E., Apriwandi, A., Chow, S., & Taslim, R. (2023). Integrated pyrolysis approach of self-O-doped hierarchical porous carbon from yellow mangosteen fruit for excellent solid-state supercapacitor volumetric performance. Diamond & Related Materials, 135, 109866.
Taer, E., Apriwandi, A., Nursyafni, N., & Taslim, R. (2022). Averrhoa bilimbi leaves-derived oxygen doped 3D-linked hierarchical porous carbon as high-quality electrode material for symmetric supercapacitor. Journal of Energy Storage, 52, 104911. https://doi.org/10.1016/j.est.2022.104911
Taer, E., Apriwandi, A., & Rama, D. (2021). Solid coin-like design activated carbon nanospheres derived from shallot peel precursor for boosting supercapacitor performance. Journal of Materials Research and Technology, 15, 1732–1741. https://doi.org/10.1016/j.jmrt.2021.09.025
Taer, E., Pratiwi, L., Apriwandi, Mustika, W. S., Taslim, R., & Agustino. (2020). Three-dimensional pore structure of activated carbon monolithic derived from hierarchically bamboo stem for supercapacitor application. Communications in Science and Technology, 5(1), 22–30.
Taer, E., Taslim, R., & Apriwandi, A. (2022). Ultrahigh capacitive supercapacitor derived from self-oxygen doped biomass-based 3D porous carbon sources. ChemNanoMat, 8(2), e202100388.
Zhao, C., Ding, Y., Huang, Y., Li, N., Hu, Y., & Zhao, C. (2021). Soybean root-derived N , O co-doped hierarchical porous carbon for supercapacitors. Applied Surface Science, 555(April), 149726.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Julnaidi Julnaidi, Edy Saputra, Erman Taer

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.