Kecepatan Pembakaran Laminar dan Tinggi Api Premix pada Campuran Pertamax-Avgas dengan Etanol

Authors

  • Muhammad Nur Cahyo Hidayat Nasrullah Akademi Penerbang Indonesia Banyuwangi
  • Muh Nurkoyim Kustanto Universitas Jember
  • Mahros Darsin Universitas Jember
  • Nasrul Ilminnafik Universitas Jember
  • Skriptyan Noor Hidayatullah Syuhri Universitas Jember

Keywords:

api premix, avgas 100LL, bahan bakar penerbangan, kecepatan pembakaran, pesawat mesin piston

Abstract

Bahan bakar penerbangan yang umum digunakan untuk pesawat dengan tipe mesin reciprocating adalah avgas 100 LL. Keandalan penggunaan bahan bakar ini masih belum tergantikan, khususnya di daerah Indonesia. Pada umumnya avgas menggunakan zat aditif berbahaya berupa tetraethyl lead atau timbal untuk meningkatkan performa bahan bakar ini.  Meskipun dapat meningkatkan performa, zat aditif ini terkenal menjadi cancer agent hingga penyebab penurunan IQ akademik pada anak-anak. Beberapa penelitian untuk mengurangi penggunaan timbal pada bahan bakar penerbangan sudah beberapa kali dibahas oleh para peneliti, salah satunya dengan mencampurkan avgas dengan bahan bakar konvensional tanpa timbal. Namun jarang yang membahas mengenai kecepatan pembakaran laminar (SL) pada topik tersebut. Artikel ini bertujuan untuk mengetahui dampak pencampuran bahan bakar avgas dengan pertamax serta penambahan etanol, serta variasi nosel burner terhadap kecepatan pembakaran laminar (SL) dan tinggi api premix yang dihasilkan pada rasio ekuivalen 0,8; 1,0; dan 1,2. Metode bunsen burner dipilih sebagai alat pengujian, karena dinilai simpel dan memiliki hasil yang cukup akurat. Dari pengujian yang dilakukan etanol memiliki nilai S­L tertinggi. Campuran avgas dan pertamax memiliki kecepatan pembakaran yang lebih rendah dibanding avgas 100 LL murni, namun lebih tinggi dari pada pertamax murni. Sebaliknya hasil tinggi api berbanding terbalik. Namun dapat diketahui bahwa penambahan volume 30% etanol pada campuran terbukti meningkatkan kecepatan pembakaran yang dihasilkan. Selain data dari variasi bahan bakar, pengujian juga dilakukan dengan variasi diameter nosel. Dapat diketahui bahwa diameter nosel mempengaruhi nilai SL.

Downloads

Download data is not yet available.

References

Almarzooq, Y. M., Schoegl, I., & Petersen, E. L. (2023). Laminar flame speed measurements of a gasoline surrogate and its mixtures with ethanol at elevated pressure and temperature. Fuel, 343, 128003. https://doi.org/10.1016/j.fuel.2023.128003

Amell, A. A. (2007). Influence of altitude on the height of blue cone in a premixed flame. Applied Thermal Engineering, 27(2–3), 408–412. https://doi.org/10.1016/j.applthermaleng.2006.07.013

Bahri, S., Muhaya, L., Wardana, I., & Widhiyanuriyawan, D. (2015). Pembakaran Premixed Minyak Nabati pada Bunsen Burner Type Silinder. Jurnal Rekayasa Mesin, 6(1), 45–50.

Bishop, G. J., & Elvers, B. (2021). Aviation Gasoline (Avgas)*. Dalam Handbook of Fuels (hlm. 529–531). Wiley. https://doi.org/10.1002/9783527813490.ch25

Chen, Z., Burke, M. P., & Ju, Y. (2009). Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames. Proceedings of the Combustion Institute, 32(1), 1253–1260. https://doi.org/10.1016/j.proci.2008.05.060

Chung Tsai, K.-, & Drysdale, D. (2002). Flame height correlation and upward flame spread modelling. Fire and Materials, 26(6), 279–287. https://doi.org/10.1002/fam.809

Cusick, S. K., Antonio I. Cortés, Ph. D., & Clarence C. Rodrigues, Ph. D. (2017). Commercial aviation safety. Dalam Commercial Aviation Safety (6th Edition). McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9781259641824/toc-chapter/chapter1/section/section1

Del Pecchia, M., Pessina, V., Berni, F., d’Adamo, A., & Fontanesi, S. (2020). Gasoline-ethanol blend formulation to mimic laminar flame speed and auto-ignition quality in automotive engines. Fuel, 264, 116741. https://doi.org/10.1016/j.fuel.2019.116741

Dirrenberger, P., Glaude, P. A., Bounaceur, R., Le Gall, H., da Cruz, A. P., Konnov, A. A., & Battin-Leclerc, F. (2014). Laminar burning velocity of gasolines with addition of ethanol. Fuel, 115, 162–169. https://doi.org/10.1016/j.fuel.2013.07.015

El-Sayed, A. F. (2017). Aircraft Propulsion and Gas Turbine Engines, Second Edition. CRC Press. https://doi.org/10.1201/9781315156743

Ershov, M. A., Klimov, N. A., Burov, N. O., Abdellatief, T. M. M., & Kapustin, V. M. (2021). Creation a novel promising technique for producing an unleaded aviation gasoline 100UL. Fuel, 284, 118928. https://doi.org/10.1016/j.fuel.2020.118928

FAA. (2012). Unleaded AVGAS Transition Aviation Rulemaking Committee FAA UAT ARC Final Report Part II Appendices. https://www.faa.gov/regulations_policies/rulemaking/committees/documents/media/Avgas.ARC.RR.Appendix.2.17.12.pdf

Fu, J., Tang, C., Jin, W., Thi, L. D., Huang, Z., & Zhang, Y. (2013). Study on laminar flame speed and flame structure of syngas with varied compositions using OH-PLIF and spectrograph. International Journal of Hydrogen Energy, 38(3), 1636–1643. https://doi.org/10.1016/j.ijhydene.2012.11.023

Gökmen, M. S., Aydoğan, H., & Doğan, İ. (2021). Effect of Gasoline-AVGAS Blends on Engine Performance of Engine with Direct Injection. Bioenergy Studies, Black Sea Agricultural Research Institute, 1(1), 1–6. https://doi.org/10.51606/bes.2021.1

He, X., Hou, X., Yang, Q., Ma, X., Tian, G., & Liu, F. (2019). Study of laminar combustion characteristics of gasoline surrogate fuel-hydrogen-air premixed flames. International Journal of Hydrogen Energy, 44(26), 13910–13922. https://doi.org/10.1016/j.ijhydene.2019.03.009

Hua, Y., Qiu, L., Liu, F., Qian, Y., & Meng, S. (2020). Numerical investigation into the effects of oxygen concentration on flame characteristics and soot formation in diffusion and partially premixed flames. Fuel, 268, 117398. https://doi.org/10.1016/j.fuel.2020.117398

Ibadurrohman, I. A., Hamidi, N., & Yuliati, L. (2021). Pengaruh Panjang Rantai Karbon dan Derajat Ketidakjenuhan terhadap Karakteristik Pembakaran Droplet Asam Lemak Tunggal. Jurnal Rekayasa Mesin, 12(2), 331–347. https://doi.org/10.21776/ub.jrm.2021.012.02.11

Jiang, Y., Gruber, A., Seshadri, K., & Williams, F. (2020). An updated short chemical‐kinetic nitrogen mechanism for carbon‐free combustion applications. International Journal of Energy Research, 44(2), 795–810. https://doi.org/10.1002/er.4891

Karakoç, T. H., Colpan, C. O., & Şöhret, Y. (2018). Advances in Sustainable Aviation. Dalam T. H. Karakoç, C. O. Colpan, & Y. Şöhret (Ed.), Advances in Sustainable Aviation. Springer International Publishing. https://doi.org/10.1007/978-3-319-67134-5

Katoch, A., Millán-Merino, A., & Kumar, S. (2018). Measurement of laminar burning velocity of ethanol-air mixtures at elevated temperatures. Fuel, 231, 37–44. https://doi.org/10.1016/j.fuel.2018.05.083

Kohse-Höinghaus, K. (2021). Combustion in the future: The importance of chemistry. Proceedings of the Combustion Institute, 38(1), 1–56. https://doi.org/10.1016/j.proci.2020.06.375

Kohse‐Höinghaus, K., Oßwald, P., Cool, T. A., Kasper, T., Hansen, N., Qi, F., Westbrook, C. K., & Westmoreland, P. R. (2010). Biofuel Combustion Chemistry: From Ethanol to Biodiesel. Angewandte Chemie International Edition, 49(21), 3572–3597. https://doi.org/10.1002/anie.200905335

Kumar, T., Mohsin, R., Ghafir, M. F. A., Kumar, I., & Wash, A. M. (2018a). Concerns over use of leaded aviation gasoline (AVGAS) fuel. Chemical Engineering Transactions, 63, 181–186. https://doi.org/10.3303/CET1863031

Kumar, T., Mohsin, R., Ghafir, M. F. A., Kumar, I., & Wash, A. M. (2018b). Review of alternative fuel initiatives for leaded aviation gasoline (AVGAS) replacement. Chemical Engineering Transactions, 63, 175–180. https://doi.org/10.3303/CET1863030

Kumar, T., Mohsin, R., Majid, Z. A., Ghafir, M. F. A., Yusuf, N. K., Kim, J. Y., Wash, A. M., & Sahri, D. M. (2019). Response surface methodology application in optimization of performance and exhaust emissions of RON 98, aviation gasoline 100LL and the blends in Lycoming O-320 engine. Fuel, 256. https://doi.org/10.1016/j.fuel.2019.115909

Kumar, T., Mohsin, R., Majid, Z. Abd., Ghafir, M. F. A., & Wash, A. M. (2020a). Experimental optimisation comparison of detonation characteristics between leaded aviation gasoline low lead and its possible unleaded alternatives. Fuel, 281, 118726. https://doi.org/10.1016/j.fuel.2020.118726

Kumar, T., Mohsin, R., Majid, Z. Abd., Ghafir, M. F. A., & Wash, A. M. (2020b). Experimental study of the anti-knock efficiency of high-octane fuels in spark ignited aircraft engine using response surface methodology. Applied Energy, 259, 114150. https://doi.org/10.1016/j.apenergy.2019.114150

Kustanto, M. N., Wardana, N. G., Sasongko, M. N., & Yuliati, L. (2017). Laminar burning velocity of ethanol premixed combustion enriched with liquefied petroleum gas (LPG). ENERGETIKA, 16–22.

Li, C., Cheng, K., Ma, S., Liu, H., Ji, Z., & Qin, J. (2022). Performance analysis of solid oxide fuel cell/piston engine hybrid system for aviation. Applied Thermal Engineering, 214, 118797. https://doi.org/10.1016/j.applthermaleng.2022.118797

McAllister, S., Chen, J.-Y., & Fernandez-Pello, A. C. (2011). Thermodynamics of Combustion (hlm. 15–47). https://doi.org/10.1007/978-1-4419-7943-8_2

MIKOFSKI, M., WILLIAMS, T., SHADDIX, C., & BLEVINS, L. (2006). Flame height measurement of laminar inverse diffusion flames. Combustion and Flame, 146(1–2), 63–72. https://doi.org/10.1016/j.combustflame.2006.04.006

Nasrullah, M. N. C. H., Kustanto, M. N., Darsin, M., Ilminnafik, N., & Syuhri, S. N. H. (2023). Studi Kecepatan Pembakaran Laminar dan Tinggi Api Premix Avgas 100 LL dengan Variasi Ekuivalen Rasio. TURBO : Jurnal Program Studi Teknik Mesin UM Metro , 12(02), 410–417. https://doi.org/10.24127/trb.v12i2.2952

Pan, Z., Zou, X., Zhou, Z., & Zhou, K. (2020). Fatigue Research for Connecting Rod of Aero Piston Engine. Journal of Physics: Conference Series, 1519(1), 012004. https://doi.org/10.1088/1742-6596/1519/1/012004

Pertamina. (2023, September 29). Daftar Harga Aviasi. One solution Pertamina. https://onesolution.pertamina.com/Harga

Pizzuti, L., Martins, C. A., & Lacava, P. T. (2016). Laminar burning velocity and flammability limits in biogas: A literature review. Renewable and Sustainable Energy Reviews, 62, 856–865. https://doi.org/10.1016/j.rser.2016.05.011

Prasetiyo, D. H. T., & Wahyudi, D. (2022). Pengaruh rasio ekuivalen dan komposisi bahan bakar terhadap karakteristik api dengan menggunakan bahan bakar biodiesel kesambi. Turbo : Jurnal Program Studi Teknik Mesin, 11(2). https://doi.org/10.24127/trb.v11i2.2247

Rallis, C. J., & Garforth, A. M. (1980). The determination of laminar burning velocity. Progress in Energy and Combustion Science, 6(4), 303–329. https://doi.org/10.1016/0360-1285(80)90008-8

Ramdani, D., Rizqi, R. M., & Maradita, F. (2019). Pengaruh Fasilitas, Kualitas Pelayanan dan Brand Image Terhadap Keputusan Menggunakan Transportasi Udara. Jurnal Manajemen dan Bisnis, 2(2), 45–56. https://doi.org/10.37673/jmb.v2i2.523

Rejeki, F., & Ayumi, V. (2023). Analisa Sentimen Mengenai Kenaikan Harga Bbm Menggunakan Metode Naïve Bayes Dan Support Vector Machine. JSAI : Journal Scientific and Applied Informatics, 6(1). https://doi.org/10.36085

Seymour, K., Held, M., Georges, G., & Boulouchos, K. (2020). Fuel Estimation in Air Transportation: Modeling global fuel consumption for commercial aviation. Transportation Research Part D: Transport and Environment, 88, 102528. https://doi.org/10.1016/j.trd.2020.102528

Sher, F., Iqbal, S. Z., Liu, H., Imran, M., & Snape, C. E. (2020). Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources. Energy Conversion and Management, 203, 112266. https://doi.org/10.1016/j.enconman.2019.112266

Shiek, S. S., Mani, M. S., Kabekkodu, S. P., & Dsouza, H. S. (2021). Health repercussions of environmental exposure to lead: Methylation perspective. Toxicology, 461, 152927. https://doi.org/10.1016/j.tox.2021.152927

Sileghem, L., Alekseev, V. A., Vancoillie, J., Nilsson, E. J. K., Verhelst, S., & Konnov, A. A. (2014). Laminar burning velocities of primary reference fuels and simple alcohols. Fuel, 115, 32–40. https://doi.org/10.1016/j.fuel.2013.07.004

Suarta, I. M., & Widana, I. K. (2017). PENGARUH PENAMBAHAN N-HEPTANA PADA HYDROUS DAN ANHYDROUS ETANOL TERHADAP KECEPATAN PEMBAKARAN. PROSIDING SNITT POLTEKBA, 2(1), 189–195.

Sugara, I. R., Ilminnafik, N., Junus, S., Kustanto, M. N., & Hermawan, Y. (2023). Experimental Study on the Effect of Magnetic Fields on Combustion Characteristics of Biodiesel from Nyamplung (Calophyllum Inophyllum). Automotive Experiences, 6(1), 122–132. https://doi.org/10.31603/ae.8328

Sulung, S. D., Rumani, D. D., Qiram, I., Nasrullah, M. N. C. H., & Wibowo, U. L. N. (2023). Impact of the fuel mixture ratio of AVGAS 100LL and RON 92 fuel on combustion characteristics. Journal of Science Technology (JoSTec), 5(1), 07–13. https://doi.org/10.55299/jostec.v5i1.478

Sun, X., Wandelt, S., & Zhang, A. (2021). Technological and educational challenges towards pandemic-resilient aviation. Transport Policy, 114, 104–115. https://doi.org/10.1016/j.tranpol.2021.09.010

Tian, G., Daniel, R., Li, H., Xu, H., Shuai, S., & Richards, P. (2010). Laminar Burning Velocities of 2,5-Dimethylfuran Compared with Ethanol and Gasoline. Energy & Fuels, 24(7), 3898–3905. https://doi.org/10.1021/ef100452c

Wahyudi, D. (2013). Kecepatan Api Premix Penyalaan Atas Campuran Stoikiometri dan Nitrogen. Edisi Nopember, 3(2).

Wang, X., Cheng, X., Lu, H., Pan, F., Qin, L., & Wang, Z. (2020). Effect of burner diameter on structure and instability of turbulent premixed flames. Fuel, 271, 117545. https://doi.org/10.1016/j.fuel.2020.117545

Wang, Z., Han, X., He, Y., Zhu, R., Zhu, Y., Zhou, Z., & Cen, K. (2021). Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames. Combustion and Flame, 229, 111392. https://doi.org/10.1016/j.combustflame.2021.02.038

Wardana, I. N. G. (2008). Bahan Bakar dan Teknologi Pembakaran. PT. Danar Wijaya. Brawijaya University Press Malang.

Wei, Y., Wei-wei, C., Yue-qin, S., Xiao-long, Z., & Ying, Z. (2017). Effect of Aromatic Amine Antiknocks on the Properties of Grade 100 Unleaded Aviation Gasoline. Journal of East China University of Science and Technology , 43(3), 311–316. https://doi.org/10.14135/j.cnki.1006-3080.2017.03.003

Więckowski, M. (2021). Will the Consequences of Covid-19 Trigger a Redefining of the Role of Transport in the Development of Sustainable Tourism? Sustainability, 13(4), 1887. https://doi.org/10.3390/su13041887

Xu, H., Yao, C., Xu, G., Wang, Z., & Jin, H. (2013). Experimental and modelling studies of the effects of methanol and ethanol addition on the laminar premixed low-pressure n-heptane/toluene flames. Combustion and Flame, 160(8), 1333–1344. https://doi.org/10.1016/j.combustflame.2013.02.018

Yusri, I. M., Abdul Majeed, A. P. P., Mamat, R., Ghazali, M. F., Awad, O. I., & Azmi, W. H. (2018). A review on the application of response surface method and artificial neural network in engine performance and exhaust emissions characteristics in alternative fuel. Renewable and Sustainable Energy Reviews, 90, 665–686. https://doi.org/10.1016/j.rser.2018.03.095

Zhen, H. S., Leung, C. W., Cheung, C. S., & Huang, Z. H. (2014). Characterization of biogas-hydrogen premixed flames using Bunsen burner. International Journal of Hydrogen Energy, 39(25), 13292–13299. https://doi.org/10.1016/j.ijhydene.2014.06.126

Zhen, H. S., Leung, C. W., Cheung, C. S., & Huang, Z. H. (2016). Combustion characteristic and heating performance of stoichiometric biogas–hydrogen–air flame. International Journal of Heat and Mass Transfer, 92, 807–814. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.040

Zhou, L. (2018). Fundamentals of Combustion Theory. Dalam Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows (hlm. 15–70). Elsevier. https://doi.org/10.1016/B978-0-12-813465-8.00003-X

Downloads

Published

2024-01-30

How to Cite

Nur Cahyo Hidayat Nasrullah, M., Nurkoyim Kustanto, M., Darsin, M., Ilminnafik, N., & Noor Hidayatullah Syuhri, S. (2024). Kecepatan Pembakaran Laminar dan Tinggi Api Premix pada Campuran Pertamax-Avgas dengan Etanol. National Multidisciplinary Sciences, 3(1), 63–78. Retrieved from http://proceeding.unmuhjember.ac.id/index.php/nms/article/view/514